
1 von 8

cspForth for Linux

Copyright (C) 2008 Manfred Mahlow (manfred.mahlow@forth-ev.de
[mailto:manfred.mahlow@forth-ev.de])

A first development snapshot of cspForth was released for the annual general meeting of the
German Forth-Gesellschaft e.V. at Kloster Roggenburg, in April 2008. Now the second snapshot
csp4th-sn02-080816.tar.gz is available and should be used. The documentation was

updated accordingly.

Introduction

cspForth is a 32 bit Forth System for Linux on x86 PC-Systems. It came into being as a test bed,
to evaluate the benefits of using OOP concepts with Forth. When looking for a small, easy to
understand and easy to modify Forth System, I found that Reva Forth by Ron Aron was close to
my needs, even though it did not comform to the ANS Forth Standard.

cspForth supports on demand loading of source code modules, importing functions from shared
libraries and creating standalone applications. All this was inherited from Reva 6.0 and modified
with respect to my needs.

cspForth has two special features, that make it different from most other Forth-Systems:

cspForth supports two search orders, the well known search order for vocabularies and

wordlists and an extra search order for classes, objects and interfaces.

cspForth supports preludes. A prelude is a Forth word, that is assigned to another Forth

word in a way, that it is executed before the word, it’s assigned to, is executed or

compiled.

This two features are the basis for my way of implementing OOP concepts in Forth. The result is
an easy to use OOP Toolkit with a syntax in the spirit of Forth, that is available as a loadable
source code module.

The basic underlaying idea is, to use implicit context switching to assign methods to objects. An
object, before executed or compiled, creates and activates its class specific search order to give
access to its methods. A method found in this context, switches back to the default search order
(or to another one), before it is executed or compiled itself. The context switching is done by
context switching preludes.

I found that using OOP concepts with Forth can be very appealing, especially when combined with
on demand loading of source code modules.

cspForth is distributed to let you gain your own OOP experience with Forth and to
possibly trigger some discussion. It is released under the Artistic License. Please see the LICENSE
file enclosed in the cspForth archive file.

cspForth is work in progress. Please keep in mind that it came into beeing as a test bed and not
as a production system.

Installing cspForth

cspForth is distributed as cspForth-*.tar.gz or cspForth-*.zip archive file. Unpack the archive
file in a directory of your choice. This will create a directory named csp4th-* with several
subdirectories and files in it. We will call it the cspForth directory from now on.

In the cspForth directory you will find a file named csp4th. This is the cspForth executable. It
should work out of the box with most current Linux distributions. If not, you have to build it from
the source (see Building cspForth).

Note:

You can install cspForth on an USB-Stick for mobile use or to test it with a Linux Live

System from CD or DVD.



2 von 8

Building cspForth

The cspForth archive comes with a prebuild executable. Rebuilding the executable requires the
FASM assembler, version 1.62 or later, the GNU C Compiler and the make utility. To rebuild
the executable start a terminal in the cspForth directory and enter the following commands on the
command line:

make clean ; make all

This will delete the old executable and create the new one. Thats all.

Starting cspForth

The cspForth executable is called csp4th. You will find it in the cspForth directory. It can be
invoked with or without options. Options may appear multiple times and in any order. When
csp4th is invoked without any option it simply starts up, displays a startup message and waits for
terminal input. If invoked with options, it starts up without a startup message and processes the
options.

Syntax:

[/path/]csp4th [-e 'words ...'] [-n 'module name'] [-t 'module name'] [filename] [--]

Options:

-e 'words …' causes 'words ..' to be interpreted

-n 'module name' loads the file 'module/name.4th' from the cspForth source code library if it is not already loaded

-t 'module name' loads the file 'module/name.4th' from the cspForth source code library

filename includes the file 'filename'

– stops processing of command line options

Before processing any option, cspForth interprets the hidden file .appnamerc in the users home
directory, if it exits. appname is the name of the cspForth executable. The default is csp4th. This
file may be used to configure cspForth during startup. It must contain valid Forth code. For
security reasons, this file, if it exists, should only be editable by the user, it belongs to!

Notes:

As long as the cspForth directory is not in your path, you have to enter the relative or

absolute file name to invoke the cspForth executable.

On a Linux System that does not support the /proc file system, you must enter the

absolute file name to invoke the cspForth executable. Otherwise it will not startup properly.

This may also be the case, if you try cspForth on an Ubuntu Live System.

cspForth does not support command line editing and command line history of itself. To get

both you can call the cspForth executable via the rlwrap utility.

rlwrap [/path/]csp4th [-e 'words ...'] [-n 'module name'] [-t 'module name'] [filename] [--]

Using Modules

cspForth supports to create and use source code modules. A module is a text file holding valid
Forth code. It has the file name extension .4th and is stored in one of two module directories. The
names of this directories are hold in the variables dir(1) and dir(2). The defaults are user and
share in the cspForth directory. You may change this ( with care ) to your needs. The default
search order for modules is dir(1), dir(2).

You can write your own modules, give it the file name extension .4th and store it in one of the
module directories. Use the share directory for modules that would be of interest for other users
too.



3 von 8

Modules can be loaded once or multiple times.

needs module name

loads the module 'module name' and registers it as loaded. Any further 'needs module name' is
then ignored.

take module name

loads the module module name without registering it and can be used to load a module again and
again.

The module name is the file name of the related module relativ to the module directory but
without the file name extension and with the file name separator characters '/' substituted with a
space, e.g. needs String Array will load the file String/Array.4th from the modules directory
dir(1)=<cspForth directory>/user or dir(2)='<cspForth directory>/share.

Note:

Text following a 'needs …' or 'take …' phrase in the same line, must be separated from the 'needs
…' or 'take …' phrase by two or more spaces.

Getting Help

cspForth has a context sensitive help utility, implemented as a loadable module. The module can
be loaded with needs help. It adds the word h to the dictionary.

To get help for a word <name> enter h <name> on the command line.

If <name> is found in the current search order, its glossary entry is displayed. Otherwise a global
help file is searched for an entry for the word <name>. If one is found, it is displayed. If not, an
error message is displayed.

Without entering a name you will get some help or info for the current context.

Using OOP Concepts

Loading the Modules

  needs oop ( -- )

Loads the OOP module, if it´s not yet loaded. It also loads all other modules required by the OOP
module.

After loading the OOP module the system status is as follows :

needs oop  ??

  Stack: (0)
Current: oop
Context: oop  oop  forth  root
--------------------------------------------------------------------------------
 ok

the data stack is unchanged

the current compilation context is the vocabulary oop

the current search context is the vocabulary search order with the vocabulary oop on the

top

Note: The vocabulary oop should be used as the “root” context for OOP-based definitions.

Not to Get Stuck

The three most important words of the OOP module are .. , ?? and ??? . They will help you not to



4 von 8

get stuck in the class hierarchy and are available in any context.

  .. ( -- )

Switches back from a class, object or iface search order to the vocabulary search order, that was
left, when the class, object or iface search order was activated.

Notes:

.. is the default prelude that is assigned to methods.

.. is a noop-word in the vocabulary search order.

  ?? ( -- )

Displays the current system status and the words of the top wordlist in the current search order.

  ??? ( -- )

Same as ?? but lists all words of all wordlists in the current search order, if it´s a class, object or
iface search order.

Creating Classes

class <name> ( -- )

Creates a new class in the current compilation context, using the next word from the input stream
as its name.

<name> definitions ( -- )

Makes the new class the current compilation context.

A new class may inherit from another class.

<class> inherit ( -- )

The object specification of a class may be an explicit memory request

self allot ( u -- )

or a list of instance variables ( references to objects of other classes )

<class1> this <name1> ( -- )
<class2> this <name2> ( -- )

or a mixture of both.

An object specification, when finalised, should be sealed explicitly,

self seal

although it is sealed implicitly when the first object is created.

The next step is to create methods to be applied to the objects of the class.

m: <name> ( i*x oid -- j*x )

starts a colon definition for a method. The Forth word m: has, compared with the word : (colon),
the additional affect, to make the created word a context switching one, by assigning it the word
.. as context switching prelude.

oid is the object identifier of the calling object. The programer is responsable to handle it in the
methods definition. Sometimes this makes the code complicated, especially when using do … loop
constructs. Then it's possible to get the oid out of the way by using an object stack. This gives a



5 von 8

little runtime overhead but can make coding much easier.

To use the object stack, start the stack diagram of the method definition with (O. This compiles a
word, that pushes the oid to the top of the object stack (TOOS), when the method is executed.

m: <name> (O i*x -- j*x ) 

Inside the method definition you can fetch the oid from the TOOS to the top of the data stack
(TOS) with the word this. Its a context switching one. Its prelude is the word self, i.e. it activates
the class search order, the method belongs to.

Note:

A method definition, like any colon definition, is terminated with the Forth word ;

(semicolon). For methods, the word semicolon has an extra compile time semantics: If the

word, preceeding the semicolon is a context switching one, switching to a class or iface

context, then the default prelude of the method is overwritten with this word, i.e. the

method will switch to that context.

A method can also be created as an alias of an existing Forth word. This is done with

method ' <name1> alias <name2>

or

m' <name1> alias <name2>

Creating Objects

To create an instance of a class use the word 'new'.

<class> new <object> ( -- )

This creates a variable with the class <class> as its prelude. The memory, needed for the
object,is assigned to the variable. It was specified by the object specification of the class <class>.
The object, when executed, returns the address of this memory on the top of the data stack
(TOS). We call it the object identifier 'oid'.

Additional memory may be allocated with the 'init' method ( see the modules 'Buffer.4th' and
'String.4th' as examples ).

A new object should always be initialized, before it is used. The respective method must be
defined by the programer and should always be called init.

<object> init ( i*x -- j*x )

The init method should at least initialize the objects memory.

Using Objects

An object can be any combination of data and methods. You can implement variables, datatypes,
data structures, functional building blocks and whole applications. See the predefined classes and
the examples in the module directories.

An object, when executed, returns its object identifier oid on the top of the data stack (TOS). It's
the address of the objects data memory. In interpret or compile mode, an object gives access to
the public instance variables and to the methods of the class it belongs to, to be executed or
compiled.

Using Shared Libraries

cspForth supports to import functions from shared libraries. The (object oriented) library
interface can be loaded with



6 von 8

  needs libs ( -- )

To import a function from a shared library one must first create and initialize a library object to
get access to the library

           lib new <name> ( -- )    " <filename>" <name> init

  e.g.:    lib new libc ( -- )      " libc.so.6" libc init

A function from the library can then be imported with

         <name> import <function> ( input parameters -- output parameters )

  e.g.:    libc import time ( a|0 -- sec ) 

or

         <name> import <function> as <alias> ( input parameters -- output parameters )

  e.g.:    libc import time as os_time ( a|0 -- sec ) 

Note: The stack diagram is parsed to determine the number of input and output parameters.

For further information use the help utility in the contexts lib and libs.

Interfacing GTK+

Based on the OOP Module it was relatively easy to implement a GTK+-API for cspForth. GTK+
has an object oriented design, although it's written in C. It's class hierarchy can be mapped
directly to a corresponding class hierarchy in cspForth.

GTK+ is a really big and powerful toolkit. So I have taken the approach to only implement a
minimal subset of properties and methods per class. Further properties and methods can be
added later, when needed for an application.

Classes are implemented as loadable source code modules, so one can always only load those
classes, that are really needed for an application.

cspForth comes with a lot of predefined classes. Most of the simpler GTK+ Widgets are already
implemented and others will follow (you are invited to contribute). A widget is created as an
instance of its class and must be initialized explicitly with its init method, before any further use.

You will find examples for most of the predefined classes, that will help you figure out, how to use

the GTK+ libraries. 
1)

 To execute all this examples at one go, start cspForth and enter

take gtk examples

on the command line.

For the main class hierarchy you will already find glossary entries with the context sensitive help
utility (after a module has been loaded). For most other classes, and for the examples, help texts
are not yet written. Please have a look at the files in the modules directory dir(1)=<cspForth
directory>/user. See the files hello.1.4th and GtkToplevel/example.x.4th to get started.

If you are familiar with the German Language you may want to read the article Widgets zum
Anfassen - GUI-Skripting mit Forth und GTK+ in the Forth-Magazin Vierte Dimension 2/2008.

Saving cspForth

You can save the current state of a running cspForth system to an executable file. For further
information see the help text for the word save.

Warning

cspForth is work in progress and that's much more the case for the GTK+ Interface. Details
may change !



7 von 8

FAQ | Questionary

( this section created because this Wiki seems to lack the concept of a 'discussion page.')

Quote: The basic underlying idea is to use implicit context switching to assign methods to objects.
Before being executed or compiled, an object creates and activates its class specific search order
to give access to its methods. A method found in this context switches back to the default search
order (or to another one), before it is executed or compiled itself. The context switching is done
by context switching preludes.

Preludes look like an interesting concept, but more in-depth description is in order. In Forth,
normally STATE and setting global variables are frowned upon. It would seem that setting up a
temporary search order is several orders of magnitude more invading than this. Could some
examples be given, please? — marcel hendrix [mailto:mhx@iae.nl] 2008/08/18 22:33

1. Concerning preludes:

I presented the prelude concept on the euroForth98. The title of the paper was: PRELUDE and
FINALE. Implicit context switching based on pre- and post-executed words. Appendix 1 of the
paper is outdated. The syntax has changed since then. Today I only use pre-executed words
(preludes) and no post-executed ones any more. (Phone and e-mail are outdated in the paper!)

2. Concerning STATE … :

I know about the discussion concerning STATE-smart words but I'm not shure what's your concern
here. If it's ok for you to use a search order of wordlists and vocabularies, then it should probably
also be ok to temporarily change the search order (by context switching words).

Manfred Mahlow [mailto:manfred.mahlow@forth-ev.de] 2008/08/19

Thank you for the reference to the paper. However, the details there aren't sufficient to answer
my question above. E.g., the given implementation of final as FORTH would be wrong if I do
something like ALSO ASSEMBLER variable ape 3 ape ! (The paper also notes this, but
doesn't give the details how this is / could be fixed).

The problem with STATE (as you of course know), is that it can be used to write words that
execute differently depending on its value. When foo is STATE dependent, this ultimately can
lead to : ape foo ; not being the same as : ape [ ' foo ] literal EXECUTE ;. I
was wondering if the potential for this class of problems might be even higher with the prelude
concept.

Do you really set and reset the search order at run-time for each word? That would be quite an
overhead.

— marcel hendrix [mailto:mhx@iae.nl] 2008/08/20 22:02

Do you really set and reset the search order at run-time for each word? …

No, it's only done at interpret time by the outer/text interpreter and does not add a run-time
overhead. This might become more obvious when looking at the specification of the Forth text
interpreter in DPANS94.

DPANS94, paragraph 3.4 defines the Forth text interpreter of a standard system as follows:

  Text interpretation (...) shall repeat the following steps until either the
  parse area is empty or an ambiguous condition exists:

  a) Skip leading spaces and parse a name (see 3,4,1);

  b) Search the directory name space (see 3.4.2). If a definition name matching 
     the string is found:
 
     1. if interpreting, perform the interpretation semantics of the definition
        (see 3.4.3.2), and continue at a);
     2. if compiling, perform the compilation semantics of the definition (see 
        3.4.3.3), and continue at a);  

  c) If a definition name matching the string is not found, attempt to convert 
     the string to a number ...

To support preludes, the subsection b) of the text interpreter definition is changed to:

  b) Search the directory name space (see 3.4.2). If a definition name matching 



8 von 8

     the string is found:
 
     1. if the definition has a prelude, perform the execution semantics of the
        prelude definition;
     2. if interpreting, perform the interpretation semantics of the definition
        (see 3.4.3.2), and continue at a);
     3. if compiling, perform the compilation semantics of the definition (see 
        3.4.3.3), and continue at a);  

So, when a prelude is assigned to a word/definition, the word/definition gets an extra semantics,
that could be called prelude semantics. It's the execution semantics of the preludes definition.

The problem with STATE …

Assigning a prelude to a word/definition foo will not make it STATE-smart but it will however
have the effect, that : ape1 foo ; will not have the same effect as : ape2 [ ' foo ]
literal execute ; at compile-time, because when ape1 is compiled, the prelude is
executed before the compile time semantics of foo is executed. When ape2 is compiled, the
prelude of foo is not executed.

Until now it's my experience, that this is a minor problem, when using context switching preludes.

Thank you for the reference to the paper. However …

The code from Figure 3 in the paper for the euroForth98 has several limitations

The top entry of the search order is changed from the current context to ascii to forth,

when a variable of the type ascii is created or manipulated.

1.

When the vocabulary ascii is executed as the prelude of an ascii-variable, other

vocabularies are still in the search order, so that non-ascii words could accidently be used

as ascii methods.

2.

If the vocabulary ascii is added to the search order with ascii also, it's method

variable could hide the word variable in the vocabulary forth.

3.

All this could lead to “high quality bugs”.

The goal of the code of that days was to briefly demonstrate the basics of using context switching
preludes to bind methods to objects. The intention was to trigger some discussion concerning OOP
with Forth. The limitations of that code have been overcome by introducing a second search order
for classes, interfaces and objects, that does not interfere with the default search order for
vocabularies and wordlists. You may want to have a look at the module oop.4th in the
subdirectory share of the <cspForth directory>.

Manfred Mahlow [mailto:manfred.mahlow@forth-ev.de] 2008/08/22

1)

 I recently started to write a tutorial for the cspForth GTK+ API. You can find it here.

Discussion

 

en/projects/csp4th/cspforth.txt · Last modified: 2008/09/01 20:33 by mm

Except where otherwise noted, content on this wiki is licensed under the following license:CC 
Attribution-Noncommercial-Share Alike 3.0 Unported
[http://creativecommons.org/licenses/by-nc-sa/3.0/]


