
cspForth for Linux

This is a first release of cspForth - a development snapshot - for the annual general meeting
of the German Forth-Gesellschaft e.V. at Kloster Roggenburg, in April 2008.

Copyright (C) 2008 Manfred Mahlow (manfred.mahlow@forth-ev.de)

Introduction

cspForth is a 32 bit Forth System for Linux on x86 PC-Systems. It came into being as a test
bed, to evaluate the benefits of using OOP concepts with Forth. When looking for a
small, easy to understand and easy to modify Forth System, I found that Reva Forth by Ron
Aron was close to my needs, even though it did not comform to the ANS Forth Standard.

cspForth supports on demand loading of source code modules, importing functions from
shared libraries and creating standalone applications. All this was inherited from Reva 6.0
but modified with respect to my OOP interests.

cspForth has two special features, that make it different from most other Forth-Systems:

cspForth supports two search orders, the well known search order for vocabularies and

wordlists and an extra search order used for classes, objects and interfaces.

cspForth supports preludes. A prelude is a Forth word, that is assigned to another Forth

word in a way, that it is executed (by the outer interpreter) before the word, it’s assigned

to, is executed or compiled.

This two features are the basis for my way of implementing OOP concepts in Forth. The
result is an easy to use OOP Toolkit with a syntax in the spirit of Forth, that is available as a
loadable source code module.

The basic underlaying idea is, to use implicit context switching to assign methods to objects.
An object, before executed or compiled, creates and activates its class specific search order
to give access to its methods. A method found in this context, switches back to the default
search order (or to another one), before it is executed or compiled itself. The context
switching is done by context switching preludes.

I found that using OOP concepts with Forth can be very appealing, especially when combined
with on demand loading of source code modules.

cspForth is distributed to let you gain your own OOP experience with Forth and to possibly
trigger some discussion. It is released under the ‘Artistic License‘. Please see the enclosed
LICENSE file.

cspForth is work in progress. Please keep in mind that it was made as an OOP test bed and
not as a production system.

Installing cspForth

cspForth is distributed as cspForth-jjmm.tgz or cspForth-jjmm.zip archive file. Unpack
the archive file in a directory of your choice. This will create a directory named csp4th-jjmm
with several subdirectories and files in it. We will call it the cspForth directory from now on.

In the cspForth directory you will find a file named csp4th. This is the cspForth executable. It
should work out of the box with most current Linux distributions. If not, you have to build it
from the source (see Building cspForth).

Note:

You can install cspForth on an USB-Stick for mobile use or to test it with a Linux Live

System from CD or DVD.

Building cspForth

Coming soon.

Starting cspForth

The cspForth executable is called csp4th. You will find it in the cspForth directory. It can be
invoked with or without options. Options may appear multiple times and in any order. When
csp4th is invoked without any option it simply starts up, displays a startup message and
waits for terminal input. If invoked with options, it starts up without a startup message and
processes the options.

Syntax:

csp4th [-e 'words ...'] [-n 'module name'] [-t 'module name'] [filename] [--]

Options:

-e ‘words ...’ causes ‘words ..’ to be interpreted

-n ‘module name’ loads the file ‘module/name.4th’ from the cspForth source code library if it is not already loaded

-t ‘module name’ loads the file ‘module/name.4th’ from the cspForth source code library

filename includes the file ‘filename’

– stops processing of command line options

Before processing any option, cspForth interprets the hidden file ‘.appnamerc’ in the users
home directory, if it exits. ‘appname’ is the name of the cspForth executable. The default is
‘csp4th‘. This file may be used to configure cspForth during startup. It must contain valid
Forth code. This file, if it exists, should only be editable by the user!

Notes:

As long as the cspForth directory is not in your path, you have to enter the relative or

absolute file name to invoke the cspForth executable.

On a Linux System that does not support the /proc file system, you must enter the

absolute file name to invoke the cspForth executable. Otherwise it will not startup

properly. This is also the case, if you try cspForth on an Ubuntu Live System.

cspForth does not support command line editing and command line history of itself. To

get both you can call the cspForth executable via the rlwrap utility.

Using Modules

cspForth supports to create and use source code library files, called modules. A module is a
text file holding valid Forth code. It has the file name extension ‘.4th’ and is stored in one of
two module directories. The names of this directories are hold in the variables dir(1) and
dir(2). The defaults are ‘user’ and ‘share’ in the cspForth directory. You may change this (
with care) to your needs. The default search order for modules is dir(1), dir(2).

You can write your own modules, give it the file name extension ‘.4th’ and store it in one of
the module directories. Use the ‘share’ directory for modules that would be of interest for
other users too.

Modules can be loaded once or multiple times.

needs module name

loads the module ‘module name’ and registers it as loaded. Any further ‘needs module name’
is then handled like noop.

take module name

loads the module ‘module name’ without registering it and can be used to load a module
again and again.

The module name is the file name of the related module relativ to the module directory but
without the file name extension and with the file name separator characters ‘/’ substituted
with spaces, e.g. ‘needs String Array’ will load the file ‘String/Array.4th’ from the modules
directory dir(1)=’<cspForth directory>/user’ or dir(2)=’<cspForth directory>/share’.

Note:

Text following a ‘needs ...’ or ‘take ...’ phrase in the same line, must be separated from the
‘needs ...’ or ‘take ...’ phrase by two or more spaces.

Getting Help

cspForth has a context sensitive help system, implemented as a loadable module. The
module can be loaded with ‘needs help‘. It adds the word ‘h’ to the dictionary.

To get help for a word <name> enter ‘h <name>’ on the command line.

If <name> is found in the current search order, its glossary entry is displayed. Otherwise a
global help file is searched for an entry for the word <name>. If one is found, it is displayed.
If not, an error message is displayed.

Without entering a <name> you will get some help or info for the current context.

Using OOP Concepts

Loading the Modules

 needs oop (--)

Loads the OOP module, if it´s not yet loaded. It also loads all other modules required by the
OOP module.

After loading the OOP module the system status is as follows :

needs oop ??

 Stack: (0)
Current: oop
Context: oop oop forth root
--
 ok

the data stack is unchanged

the current compilation context is the vocabulary oop

the current search context is the vocabulary search order with the vocabulary oop

on the top

Note: The vocabulary oop should be used as the “root” context for OOP-based definitions.

Not to Get Stuck

The three most important words of the OOP module are ‘..’ , ‘??’ and ‘???’ . They will help
you not to get stuck in the class hierarchy and are available in any context.

 .. (--)

Switches back from a class, object or iface context to the vocabulary search order, that was
left, when the class, object or iface context was activated.

Notes:

.. is the default prelude that is assigned to methods.

.. is a noop-word in the vocabulary search order.

 ?? (--)

Displays the current system status and the words of the top wordlist in the current search
order.

 ??? (--)

Same as ‘??’ but lists all words of all wordlists in the current search order, if it´s a class,
object or iface context.

Creating Classes

class <name> (--)

Creates a new class in the current compilation context, using the next word from the input
stream as its name.

<name> definitions (--)

Makes the new class the current compilation context.

A new class may inherit from another class.

<class> inherit (--)

The object specification of a class may be an explicit memory request

self allot (u --)

or a list of instance variables (references to objects of other classes)

<class1> this <name1> (--)
<class2> this <name2> (--)

or a mixture of both.

An object specification, when finalised, should be sealed explicitly,

self seal

although it is sealed implicitly when the first instance is created.

The next step is to create methods to be applied to the objects of the class.

m: <name> (x y z oid -- u v)

starts a colon definition for a method. ‘m:’ has, compared with the Forth word ‘:‘, the
additional affect, to make the created word a context switching one, by assigning it the word
‘..’ as context switching prelude.

‘oid’ is the object identifier of the calling object. The programer is responsable to handle it in
the methods definition. Sometimes this makes the code complicated, especially when using
do loop constructs. Then it’s possible to get the ‘oid’ out of the way by using an object
stack. This gives a little runtime overhead but can make coding much easier.

To use the object stack, start the stack diagram of the method definition with ‘(O‘. This
compiles a word, that pushes the oid to the top of the object stack (TOOS), when the
method is executed.

m: <name> (O x y z -- u v)

Inside the method definition you can fetch the ‘oid’ from the TOOS to the top of the data
stack (TOS) with the word ‘this‘. Its a context switching word. Its prelude is the word ‘self‘,
i.e. it gives access to the methods class context.

Note:

A method definition is, like any colon definition, terminated with the Forth word ‘;‘. For

methods, the word ‘;’ has an extra compile time semantics: If the word, preceeding ‘;’ is

a context switching one, switching to a class or iface context, then the default prelude of

the method is overwritten with this word, i.e. the method will switch to that context.

A method can also be created as an alias of an existing Forth word. This is done with

method ' <name1> alias <name2>

or

m' <name1> alias <name2>

Creating Objects

To create an instance of a class use the word ‘new‘.

<class> new <object> (--)

This creates a variable with <class> as its prelude. A fixed number of address units is
assigned to the variable. It was explicitly or implicitly specified with ‘u self allot’ in the
object specification of <class>. The object, when executed, returns the address of this
memory on the TOS. We call it the object identifier ‘oid’.

Additional memory may be allocated with the ‘init’ method (see the modules ‘Buffer.4th’
and ‘String.4th’ as examples).

A new object should always be initialized, before it is used.

<object> init (x y z -- u v)

The ‘init’ method must be explicitly defined in the objects class by the programer. The name
‘init’ should always be used for the initialization method. An ‘init’ method should at least set
initial values at the objects memory.

Using Objects

An object can be any combination of data and methods, you can imagine and implement as
a class. You can implement variables, datatypes, data structures, functional building blocks
and whole applications. See the predefined classes and the examples in the module
directories.

An object, when executed, returns its object identifier ‘oid’ on the top of the data stack
(TOS). It’s the address of the objects data memory. In interpret or compile mode an object
gives access to the public instance variables and methods of the class it belongs to, to be
executed or compiled.

Using Shared Libraries

cspForth supports to import functions from shared libraries. The (object oriented) library
interface can be loaded with

 needs libs (--)

To import a function from a shared library one must first create and initialize a library object
to get access to the library

 lib new <name> (--) " <filename>" <name> init

 e.g.: lib new libc (--) " libc.so.6" libc init

A function from the library can then be imported with

 <name> import <function> (input parameters -- output parameters)

 e.g.: libc import time (a|0 -- sec)

or

 <name> import <function> as <alias> (input parameters -- output parameters)

 e.g.: libc import time as os_time (a|0 -- sec)

Note: The stack diagram is parsed to determine the number of input and output
parameters.

For further information use the help system in the contexts ‘lib’ and ‘libs‘.

Interfacing GTK+

Based on the OOP Module, it’s relatively easy to use the GTK+ Libraries to create Graphical
User Interfaces with cspForth. GTK+ has an object oriented design, although it’s written in
C. It’s class hierarchy can be mapped directly to a corresponding class hierarchy in cspForth
and using the same names for classes and properties further simplifies translation from C to
Forth.

GTK+ is a really big and powerful toolkit. So I have taken the approach to only implement a
minimal subset of properties and methods per class. Further properties and methodes can
be added later, when needed for an application. Classes are implemented as loadable source
code modules, so one can always only load those classes, that are really needed for an
application.

cspForth comes with a lot of predefined classes. Most of the simpler GTK+ Widgets are
already implemented and others will follow and, you are invited to contribute. A widget is
created as an instance of its class and must be initialized explicitely, with its ‘init’ method,
before any further use.

You will find examples for most of the predefined classes, that will help you figure out, how
to use the GTK+ libraries. For the main class hierarchy you will already find glossary entries
in the context sensitive help system (after a module has been loaded). For most other
classes, and for the examples, help texts are not yet written. Please have a look at the
module and example files in the modules directory dir(1), which defaults to <cspForth
directory>/user.

See the file hello.1.4th and the files GtkToplevel/example.x.4th to get started. To execute all
examples at one go, start cspForth and type

take gtk examples

Note:

cspForth is work in progress and that’s much more the case for the GTK+ Interface. Details
may change. You have been warned.

Saving cspForth

You can save the current state of a running cspForth system as a ‘turnkey’ application to
an executable file. For further information see the help text for ‘save‘.

csp4th/csp4th.txt · Last modified: 2008/04/20 16:40 by 127.0.0.1

