
Interpreting Control Structures — The Right Way

Mitch Bradley

Bradley Forthware

Abstract

A very simple modification allows the Forth interpreter to execute conditionals and loops in

interpret state as well as in compile state. Interpreted loops run at the same speed as

compiled loops.

How It Works

The Forth 83 Standard says that control structures (conditionals and loops) are compiled

inside colon definitions. There is a easy way to remove this restriction so that control

structures work just as well from interpret state.

The idea is very simple: when a control structure is encountered while interpreting, switch to

compile state and begin compiling an unnamed temporary colon definition. When that

control structure is finished, execute the unnamed colon definition and then forget it.

Nested control structures can be easily handled. Each word which begins a control structure

increments a variable, and each word which ends a control structure decrements the

variable. When that variable changes from 0 to 1, begin compiling the unnamed colon

definition. When the variable changes from 1 to 0, execute the unnamed colon definition

and forget it.

This can easily be implemented with 4 words:

SAVED-DP (-- adr)

The address of a variable which contains the starting address of the

temporary colon definition, if one is being compiled.

LEVEL (-- adr)

The address of a variable which contains the current control structure nesting

level.

+LEVEL (--)

Increments the value contained in the variable LEVEL . If STATE is

interpreting and LEVEL was 0 before being incremented, switch to compile

state and begin compiling an unnamed temporary colon definition.

-LEVEL (—--)

Decrements the value contained in the variable LEVEL . If LEVEL is 0 after

having been decremented, execute the temporary colon definition, discard it,

and return to interpret state.

These words are easy to implement on most systems. A *standard” implementation does not

appear to be possible, because of differences in the way that different systems compile colon

126 1987 FORML Conference Proceedings

definitions. Another implementation dependency arises from different interpreter

organizations; in some systems, the interpreter and compiler are separate loops; in other

systems, there is only one loop whose behaviour changes according to the value of STATE .

Nevertheless, a person familiar with the internals of a particular system should have little

difficulty figuring out how to do it for that system.

implementation for F83

variable saved-dp variable level

t+level (-—-)

level @ if

\ If in compile state, just increment level

1 level +!

else state @ O= if

\ If in interpret state, switch to compile state

1 level !

here saved-dp ! \ Remember the start

r> [°]] >body >r >r \ XXX Execute] after the caller

then then

: -level (-—-)

state @ O= abort" Conditionals not paired"

level @ if

-1 level +! level @ O= if

compile exit \ Finish the definition

saved-dp @ here - allot \ Reclaim the memory

[compile] [\ Enter interpret state

here >r \ YYY Execute the definition

then

then

: begin +level [compile] begin ; immediate

: do +level [compile] do ; immediate

?do +level [compile] ?do ; immediate

if +level [compile] if ; immediate

then {compile] then -level ; immediate

loop [compile] loop -level ; immediate

: +loop [compile] +loop -level ; immediate

: until [compile] until -level ; immediate

: again [compile] again -level ; immediate

repeat [compile] repeat -level ; immediate

The words SAVED-DP , LEVEL , +LEVEL , and -LEVEL take up about 200 bytes of

dictionary space. If the calls to +LEVEL and -LEVEL are added to the kernel versions of

the control structure words BEGIN , IF , LOOP, etc., instead of redefining them, the total

increase in the size of the dictionary is just over 200 bytes.

1987 FORML Conference Proceedings 127

implementation Notes:

In the above example, there are two lines of code which are not entirely portable. The line

marked XXX executes the word ”] ” (right-bracket) after the caller of +level . This is

necessary in F83, because in F83 ”] ” is the compiler loop. If ”] ” were executed directly

within +LEVEL , the rest of the control structure would be compiled before the beginning

run-time word. For instance, in the case of IF , the rest of the control structure would be

compiled before ” [compile] if”. For systems in which ”] ” simply sets the variable STATE

(as in FIG Forth and MVP-Forth), the phrase:

r> [’]] >body >r >r \ XXX Execute] after the caller

may be replaced by:

]

The line marked YYY causes the unnamed temporary colon definition to be executed when

-LEVEL returns. For most threaded code Forth implementations, pushing the parameter

field address on the return stack is a convenient (but not standard”) way to execute an

unnamed colon definition. Other systems might need to use a different technique.

Compiler Extension Words

It is possible to add the +LEVEL function to the control structure defining words <MARK

and >MARK (see Forth-83 Standard, Chapter 15), and to add the -LEVEL function to

<RESOLVE and >RESOLVE , thus making the interpreted control structure behavior

automatic for any words which use xMARK and xRESOLVE . Here is an implementation

of these system extension words, with the additional features of compiler security and

automatic compilation of the run-time word.

+>mark (acf -- adr) +level , >mark =;

+<mark (-- adr) +level <mark =;

: ->resolve (adr chk2 chkl --) pairs >resolve -level ;

: -<resolve (adr chk2 acf chkl --) rot ?pairs , <resolve -level ;

: begin +<mark 1 ; immediate

wd (1 Hde) +>mark 3 ; immediate

?do {[’] (?do) +>mark 3 ; immediate

if [’] ?branch +>mark 2 ; immediate

else {‘] branch +>mark 2 2swap 2 —>resolve ; immediate

then 2 ->resolve ; immediate

loop compile (loop) over 2+ <resolve 3 ->resolve ; immediate

: +loop compile (+loop) over 2+ <resolve 3 ->resolve ; immediate

: until [’] ?branch 1 -<resolve ; immediate

: again [’] branch 1 -<resolve ; immediate

: repeat 2swap [compile] again [compile] then ; immediate

: while [compile] if ; immediate

Conditional Compilation

Conditional compilation is the use of control structures (e.g. IFTRUE , OTHERWISE ,

IFEND , Forth-83 Standard Appendix B) to control the sequence of words compiled, rather

128 1987 FORML Conference Proceedings

than the sequence of words executed. The temporary compilation technique does not

address the issue of conditional compilation, it simply extends the utility of existing operators

to the interpret state.

The names IF , ELSE , THEN are not suitable for conditional compilation anyway, because

during conditional compilation you may very will wish to exclude code which already

contains IF , ELSE , THEN , so it is necessary to distinguish between the compilation

conditionals and the the execution conditionals.

Compiling Words in Control Structures

The use of compiling words, such as comma (,), colon (:), etc, within interpreted

control structures will result in an error. The problem is that compiling words modify the

contents of the dictionary just above HERE , which overwrites the temporary definition being

executed.

This problem can easily be alleviated by compiling the temporary definition into a separate

area away from HERE . That separate area should probably be called

COMPILE-BUFFER . This modification is left to the reader as an exercise.

Error Recovery

In case an error occurs during the compilation of a temporary definition, the following code

should be added to the QUIT routine:

level @ if

level off saved-dp @ here — O max allot

then

Prompting

The current nesting level can easily be shown at the Forth prompt. This code prompts with

”ok” in interpret state, ” |” in compile state, and ” n]” during temporary compilation,

where n is the current nesting level.

”

state @ if

level @ ?dup if° I .r. élse .": " then =." J]:"

else
i W ok uw

then

Acknowledgements

The notion of a compile buffer, a separate area where temporary definitions are compiled

before they are executed, appeared in STOIC , a Forth-like language for 8080 systems

[Sachs83]. The GRAFORTH system for Apple II computers is reputed to based on a

compile—buffer technique.

[Baden85] describes a technique for accomplishing the effect of interpreted control

structures. Baden’s technique involves re-reading the input stream on each iteration of the

loop. Consequently, interpreted loops run much slower than compiled loops.

1987 FORML Conference Proceedings 129

Bibliography

[Sach83] Sachs, J.M. and Burns, S.K., "STOIC, and interactive programming

system for dedicated computing”, Software - Practice and Experience,

Vol 13, 1983, pp 1-16.

{[Baden85] Baden, Wil, "Interpretive Logic”, 1985 Asilomar FORML Conference.

1360 1987 FORML Conference Proceedings

