\ MMT Source Code of Version 1.0 : .MMT# \ -- \ print version number ." MMT Version 1.0 2014-11-19" ; \ ---------------------------------------------------------- \ Mini Multi Tool 4bit I/O "MMT4" \ using 4e4th Release 0.34 on TI MSP430G2553 MCU LaunchPad \ started: mka, 2014_10_26 \ Idea: Juergen Pintaske and his "swiss knife" \ "Starting with Forth is hard work. Add a bit of fun \ and have something running immediately in Forth. \ Even without understanding it in the beginning. \ This was our starting point for MMT." (JP) \ ---------------------------------------------------------- \ Table of Contents \ Defining the I/O for this application, basic definitions \ Device Pinout: MSP430G2553 20-Pin PDIP \ Some scratch variables \ Juggling nibbles for packing and unpacking into 16 bit \ I/O initialisation, I/O words, test switches, time delays \ Utilities for this MCU \ Square wave at P1.5 (Pin7) using timer TA0.0 \ Midi tones B3 to B5, 2 octaves; pitch list, play a note \ PWM of 16KHz for 8MHZ DCO using timer TA0 \ ADC - init ADC0 and ADC4, get ADC value \ Servos - position 4 servos using digital OUT, double function \ Initialisation of MMT4 \ Example Programs - using switches only \ EX0 - Leave demo loop, run Forth \ EX1 - Display IN at OUT \ EX2 - Display IN at OUT, set PWM-LED too \ EX3 - Falling edge detector (1) \ EX4 - Falling edge detector with tone (2) \ EX5 - Dance of 4 servos (test servos) \ EX6 - Servo follows analog input on pin ADC4 \ EX7 - Get analog input from ADC channel 4 \ EX8 - Audio visual display of ADC4 value \ EX9 - Play demo song \ DEMOLOOP - Select an example programm by its nummber. \ More Example Programs - using serial interface to PC. \ EX11 - Echo any key \ EX12 - Toggle OUT bits manually \ ---------------------------------------------------------- \ History: \ 20141117: We are ready for a release - V10 \ Added help lines to PC examples. \ Made MMT4 images. \ Split examples in MMT and PC part. \ 20141109: Made duration of notes selectable. \ Use TONE@ TON+ now instead of NOTE in soem EXs. \ Better EX8, wait after output, not before. \ Better visualisation of EX3 and EX4, LEDs switch. \ Better EX2, no delay any more. \ Renamed file to mmt4ue2.4th because this name was unique \ while "swiss knife" and its abreviations are not. \ Renamed S1 to S3 since S1=reset on MSP-LaunchPad. \ Added: DEMOLOOP to select examples using S2 and S3 switches. \ 20141103: Cleaning up examples, added another example. \ 20141102: Added 2 servo examples. \ 20141030: Added pulses for 4 servos to OUT. \ 20141029: Renamed demos to EXn. \ Made some demos Pn. \ Added: ADC \ 20141026: First test today. \ Compiles in target without errors. \ blocks with mk0 mark = tested ok on first glance ... \ ... functioning, stack ok. \ MYBONNIE is playing, no stack error - ok \ PWM running, SWEEP is ok. \ I/O and nibbels working on variables. \ Issues: \ Glitches while setting upper nibble of P2 - fixed OUT! . \ port name P2 is in conflict with example name P2 - \ renamed examples to EXn. \ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ \ Start of Program MMT4 programmed in Forth \ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ \ This program uses some routines planned to help Learning \ for the next project: Learning Programming without PC. \ And we use them here as an example of how to program the \ MSP430 Controller in Forth. \ Add the 5 resistor LED combinations and the \ 3 switches to the 430 board or any type of breadboard \ and run routines completely in the MSP430, \ using this program running on top of Forth \ either interfaced to a PC or some parts independent of the PC \ Defining the I/O for this application \ Device Pinout: MSP430G2553 20-Pin PDIP \ (TOP VIEW) \ VCC-----------------[01 20]---------------------VSS \ (LED1 LP) AD0 P1.0--[02 19]--P2.6 OUT2 ------------ \ RXD-----------P1.1--[03 18]--P2.7 OUT3 ------------ \ TXD-----------P1.2--[04 17]--test ----------------- \ -----------S2 P1.3--[05 16]--RST S1 -------------- \ ..........AD4 P1.4--[06 15]--P1.7 S3 ---------SPI* \ _-_-_-_-_-FRQ P1.5--[07 14]--P1.6 PWM LED2-LP SPI* \ ----------IN0 P2.0--[08 13]--P2.5 OUT1------------- \ ----------IN1 P2.1--[09 12]--P2.4 OUT0------------- \ ----------IN2 P2.2--[10 11]--P2.3 IN3-------------- \ * SPI optional. \ P1.0 used as Input, later on as Analog Input 1 \ P1.1 RX and \ P1.2 TX are used as the serial interface to the PC \ P1.3 used as S2 as on the TI Launchpad, \ internal pull-up resistor enabled \ P1.4 used as Input, later on as Analog Input 2 \ P1.5 used as Output, later on to output \ one of 16 frequencies with defined length \ P1.6 Output, later on as Pulse Width Modulation output \ just like a simple D/A Output \ P1.7 Input S3, internal pull-up resistor enabled \ All P2.x Inputs have internal resistor enabled, \ so open input means HIGH signal \ P2.0 Input 0 \ P2.1 Input 1 \ P2.2 Input 2 \ P2.3 Input 3 \ P2.4 Output 0 \ P2.5 Output 1 \ P2.6 Output 2 \ P2.7 Output 3 \ Yes, we downgraded from 16 bit to 4 bit IO - but the pin \ numbers were limited, and if you add a PC via USBtoTTL3.3V \ you can do more (within the memory constraints). \ The MSP 430 will be rather fully used. \ So to save Program Space, the 4 Bit Nibbles are packed \ into 4x4 nibbles to be one Variable (16Bit cell). \ This will save on RAM used. \ Source code start ---------------------------------------- \ Some scratch variables \ IN 4 bit input, when used reflects status of 4 Input lines \ F 4 bit value for tones \ A 4 bit A register \ B 4 bit B register variable IFAB \ define one variable with these 4 nibbles in it \ W 4 bit W variable \ X 4 bit A variable \ Y 4 bit Y variable \ Z 4 bit Z variable variable WXYZ \ define one variable with these 4 nibbles in it \ A1 4 bit analog in channel 1 \ A2 4 bit analog in channel 2 \ P 4 bit pulse width modulated output \ O 4 bit output register variable 12PO \ define one variable with these 4 nibbles in it : INITSV \ -- \ init these 3 scratch variables to 0 0 IFAB ! 0 WXYZ ! 0 12PO ! ; initsv \ define a Word to show a cell at address unsigned mk0 : ? ( adr -- ) @ u. ; \ juggling nibbles HEX : n0! \ n adr -- \ store nibble 0 to variable at address >r r@ @ FFF0 and swap F and + r> ! ; : n1! \ n adr -- \ store nibble 1 to variable at address >r r@ @ FF0F and swap F and 4 lshift + r> ! ; : n2! \ n adr -- \ store nibble 2 to variable at address >r r@ @ F0FF and swap F and 8 lshift + r> ! ; : n3! \ n adr -- \ store nibble 3 to variable at address >r r@ @ 0FFF and swap F and C lshift + r> ! ; : n0@ \ adr - n \ fetch nibble 0 of variable at address @ 000F and ; : n1@ \ adr - n \ fetch nibble 1 of variable at address @ 00F0 and 0004 rshift ; : n2@ \ adr - n \ fetch nibble 2 of variable at address @ 0F00 and 0008 rshift ; : n3@ \ adr - n \ fetch nibble 3 of variable at address @ F000 and 000C rshift ; \ As a first step we have to define the relevant IO Bits \ as Input (with enabling internal pull-up resistor) \ or as output. \ Here you can find the relevant memory mapped addresses \ to set functionality, read Input Data, write Output Data \ Some of the functions used are rather complex, \ so in the beginning we will test as Input and Output only, \ see separate Forth Code \ for details, \ see 1 http://www.ti.com/product/msp430g2553 \ and 2 http://www.ti.com/product/MSP430G2553/technicaldocuments \ and 3 http://www.ti.com/lit/ds/symlink/msp430g2553.pdf our reference \ we plan to show page numbers, here in document 3 page 18 onwards \ In 4e4th, P1 and P2 are already predefined 2constants. HEX : INITIO \ -- \ I/O initialisation of MMT ports mk0 \ mask adr op \ 76543210 [ bin ] 10011001 [ hex ] 0022 ( P1DIR ) cclr \ P1 INs [ bin ] 01100110 [ hex ] 0022 ( P1DIR ) cset \ P1 OUTs [ bin ] 10001000 [ hex ] 0024 ( P1IES ) cset \ falling edge detect [ bin ] 00100000 [ hex ] 0026 ( P1SEL ) cset \ P1.5 sec func TA0.0 (FRQ) [ bin ] 10001000 [ hex ] 0027 ( P1REN ) cset \ pull-up selected [ bin ] 10000000 [ hex ] P1 cset \ P1.7 pullup enabled [ bin ] 00001111 [ hex ] 002A ( P2DIR ) cclr \ P2 INs [ bin ] 11110000 [ hex ] 002A ( P2DIR ) cset \ P2 OUTs [ bin ] 00001111 [ hex ] 002F ( P2REN ) cset \ P2 pullups selected [ bin ] 00001111 [ hex ] P2 cset \ P2 pullups enabled [ bin ] 11000000 [ hex ] 002E ( P2SEL ) cclr \ clear these bits to I/O ; INITIO \ Basic I/O mk0 HEX : OUT! \ n -- \ write OUT to P2 upper nibble (4 LEDS) 04 lshift \ move to n upper nibble 0F or \ keep input pullups set! p2 c! ; \ write port : OUT> \ -- \ copy O to OUT! 12PO n0@ out! ; : OUT \ n -- \ save n to O-nibble and do OUT! too. 12PO n0! out> ; : IN@ \ -- n \ read digital input pins, lower nibble of P2. P2 1- c@ 000F and ; : IN \ -- n \ do IN, save n to I-nibble too. in@ dup IFAB n3! ; \ copy to I-nibble of IFAB \ output a nibble to terminal HEX : 4# \ n -- \ display 4 digits unsigned <# 00 # # # # #> TYPE SPACE ; : 2# \ n -- \ display 2 digits unsigned <# 00 # # #> TYPE SPACE ; \ test falling edge at switch S3 and S2 mk0 023 constant P1IFG : S3? 080 P1IFG cget ; \ -- f \ set on edge event : S2? 008 P1IFG cget ; \ -- f \ set on edge event : S3- 080 P1IFG cclr ; \ -- \ reset edge event flag : S2- 008 P1IFG cclr ; \ -- \ reset edge event flag \ Delays mk0 \ 1MS is predefined in 4e4th. Its an empty loop, \ predefined for MCUs running with 8Mhz DCO = default. \ Use Forth word MS to make any ms delay. \ Example: \ decimal 10 ms \ delay of 10 miliseconds. DECIMAL : 1SEC \ -- \ delay of one second 1000 ms ; : SECS \ n -- \ delay of n seconds mk0 0 DO 1sec LOOP ; \ put the seconds value before the SECS word \ ---------------------------------------------------------- \ Utilities for this MCU \ ---------------------------------------------------------- \ ---------------------------------------------------------- \ Tones and notes HEX \ Output a square wave at P1.5 (pin 7) using timer TA0.0 mk0 \ Use P1.5 as timer TA0.0 ouput. \ This is done by setting P1.5 to its second function. \ Then set and start Timer. \ Note: In second function, this pin is no longer \ a general purpose I/O pin. It is switched to another I/O \ mode called 'second function' of the pin. : P15SEC \ set P1.5 to its second function 020 dup p1 1+ cset 026 cset ; : P15IO \ set back P1.5 to its general GPIO function 020 026 cclr 020 041 cclr ; : TON- \ -- \ Tone off. 00 0160 ! \ stop timer p15io \ P1.5 back to I/O 20 p1 cclr ; \ shut down current through speaker. : TON+ \ n -- \ start timer-A with interval n \ MSP430G2553, 8Mhz DCO and SMCLK /2 p15sec \ init pin 0080 0162 ! \ CCTL0 set timer output mode ( n ) 0172 ! \ CCR0 set interval 0254 0160 ! \ CTL start timer clock, mode and divider ; \ Midi tones B3 to B5, 2 octaves; pitch list for TON+ mk0 DECIMAL IHERE 0000 i, \ no tone 7962 i, \ B3 7515 i, \ C4 6695 i, \ D4 5965 i, \ E4 5630 i, \ F4 5016 i, \ G4 4469 i, \ A4 3981 i, \ B4 3758 i, \ C5 3348 i, \ D5 2983 i, \ E5 2815 i, \ F5 2508 i, \ G5 2235 i, \ A5 1991 i, \ B5 constant TONELIST HEX : TONE@ \ i -- n \ get pitch using index i cells tonelist + @ ; : NOTE \ i d -- \ play note i of duration d swap tone@ ton+ ms ton- ; : PAUSE \ q -- \ play pause (quiet) of duration q ton- ms ; \ \ see example melody below \ ---------------------------------------------------------- \ PWM of 16KHz for 8MHZ DCO using timer TA0 HEX : P16IO \ -- \ set P1.6 to GPIO 0040 0022 cset \ P1DIR P1.6 OUT 0040 0026 cclr \ P1SEL P1.6 GPIO ; : P16SEC \ -- \ set P1.6 to second function 0040 0022 cset \ P1DIR P1.6 OUT 0040 0026 cset \ P1SEL P1.6 select second function ; : PWM- 00 160 ! \ TA0CTL stop timer p16io 0040 0021 cclr ; \ set p1.6 I/O and clear p1.6 : PWM+ \ n -- \ init and start PWM at P1.6 01F4 0172 ! \ TA0CCR0 set period 16KHz at 8MHZ DCO 00E0 0164 ! \ TA0CCTL1 set output mode 0174 ! \ TA0CCR1 set pulse width 0210 0160 ! \ TA0CTL set to timer mode and run ; : PWM \ n -- \ set PWM at P1.6 n = 0...F ton- 000F and dup 0= IF drop pwm- ELSE 001F * pwm+ p16sec THEN ; \ ---------------------------------------------------------- \ ADC - init ADC0 and ADC4, get ADC value HEX \ address name \ function \ 01B0 constant ADC10CTL0 \ ADC10 control register 0 \ 01B2 constant ADC10CTL1 \ ADC10 control register 1 \ 004A constant ADC10AE0 \ ADC10 input enable register 0 \ 01B4 constant ADC10MEM \ ADC10 Memory, conversion result \ some named bits \ 0002 constant ENC \ ADC10 Enable Conversion bit \ 4000 constant INCH_4 \ Selects Channel 4 \ 10 constant BIT4 \ for P1.4 Analog Input Enable \ 0001 constant ADC10SC \ start conversion bit \ 0004 constant ADC10IFG \ ADC10 Interrupt Flag \ option bits are: \ 2000 constant SREF_1 \ set VR+ = VREF+ and VR- = AVSS \ 1000 constant ADC10SHT_2 \ 16 x ADC10CLKs \ 0040 constant REF2_5V \ ADC10 Ref 0:1.5V / 1:2.5V \ 0020 constant REFON \ ADC10 Reference on \ 0010 constant ADC10ON \ ADC10 On/Enable \ ---- \ 3070 <-- sum of option bits in hexadecimal : ADCOFF \ -- \ stop ADC10 ... 00 01B0 ! ; \ ... can be modified only when ENC = 0 : ADCON \ -- \ start ADC10 0002 01B0 set ; \ Set ENC : ADC@ \ -- x \ get ADC value 03 01B0 SET \ start conversion (ENC+ADC10SC bits) BEGIN 04 01B0 cget UNTIL \ test BIT2 (ADC10IFG) 01B4 @ ; \ get result : ADC0 \ -- \ select and init ADC channel 0 adcoff 3070 01B0 ! \ set options (see MCU user manual) 0100 01B2 ! \ select input channel (A0 at P1.0) 01 004A cset ; \ set pin, analog input enable : ADC4 \ -- \ select and init ADC channel 4 adcoff 3070 01B0 ! \ set options (see MCU user manual) 4000 01B2 ! \ select input channel (A4 at P1.4) 10 004A cset ; \ set pin, analog input enable \ Example: \ adc4 adcon adc@ . \ print single conversion \ ---------------------------------------------------------- \ RC Servo Control - position 4 RC servos connected to OUT \ Use external DC power supply for servos for sufficient voltage \ Connect servo-GND to MCU-GND. \ Connect servo control lines to OUTx. \ Control line needs a pulse between 1..2ms pulse, \ 1ms left end, 1,5ms middle, 2ms right end. \ Minimum pulse repetition rate is every 20ms, ~$40x, \ for one position HEX variable x0 variable x1 variable x2 variable x3 : LDX \ x0 x1 x2 x3 -- \ load variables X0 .. X3 x3 ! x2 ! x1 ! x0 ! ; DECIMAL : INITX \ -- \ load X0 .. X3 with &500 500 dup dup dup ldx ; initx \ linit x to &480 ... &1700 (Range is ~1200 steps) 480 constant sermin 1700 constant sermax : limit \ x -- x' \ linit x to servo minimum an maximum sermin max sermax min ; HEX : x? \ -- \ print all X x0 ? x1 ? x2 ? x3 ? ; : DEX \ x -- \ waste time x 0 DO LOOP ; : PULS \ x n -- \ send puls x to bit n of P2; n=80,40,20,10 >r r@ p2 cset dex r> p2 cclr 4 ms ; : SERVE \ -- \ send one puls to all servos x0 @ 10 puls x1 @ 20 puls x2 @ 40 puls x3 @ 80 puls ; : SERVOS \ -- \ position all servos initio 30 0 DO serve LOOP ; DECIMAL \ set x to &480 ... &1700 (Range is ~1200 steps) : SER0 \ x -- \ reposition servo0 x0 ! servos ; : SER1 \ x -- \ reposition servo1 x1 ! servos ; : SER2 \ x -- \ reposition servo2 x2 ! servos ; : SER3 \ x -- \ reposition servo3 x3 ! servos ; \ adjust x-min and x-max to match your servo. \ test, look at pulses on an oscilloscope : SERTEST \ -- \ position all servos, permanent initio BEGIN serve key? UNTIl ; \ ---------------------------------------------------------- \ Initialisation of MMT4 DECIMAL : INIT \ -- \ set pin I/O and variables. initio initsv initx ; \ --> up to here the image is saved as file \ 4e4th+mmt4-V10.txt in TI format \ ---------------------------------------------------------- \ Example Programs made for MiniTool \ You need 3 switches S1 S2 S3, and 5 LED + 470Ohm at OUT and PWM. \ ---------------------------------------------------------- \ Note: (solo) means no PC connection needed. \ ---------------------------------------------------------- \ Example 1 - display IN. (solo) HEX : EX1 \ -- \ display IN at OUT. mk0 initio BEGIN in out \ get IN and store it to OUT key? UNTIL key drop ; \ leave loop, clean up \ ---------------------------------------------------------- \ Example 2 - display IN at OUT, set PWM-LED too. (solo) HEX : EX2 \ -- \ IN to PWM and OUT mk0 initio in drop BEGIN in@ \ get INex5 ifab n3@ <> IF in dup out pwm THEN \ store IN to OUT and PWM key? UNTIL \ leave loop, clean up key drop pwm- ; \ ---------------------------------------------------------- \ Example 3 - falling edge detector (1) (solo) HEX : EX3 \ -- \ falling edge detector S2 to OUT, \ reset with S3. initio \ init system s2- s3- \ and reset edge detection 1 out \ set initial OUT value BEGIN s2? IF s2- 08 out THEN \ set %1000 on edge detect s3? IF s3- 01 out THEN \ set %0001 on edge detect key? UNTIL \ leave loop, clean up key drop ; \ ---------------------------------------------------------- \ Example 4 - falling edge detector (2) (solo) HEX : EX4 \ -- \ falling edge detector S2, play note too. initio \ init system s2- s3- \ and reset edge detection 1 out \ set initial OUT value=1 01 tone@ ton+ \ start low tone BEGIN s2? IF s2- 08 out 0F tone@ ton+ THEN \ set high tone .. s3? IF s3- 01 out 01 tone@ ton+ THEN \ or low tone as well. key? UNTIL \ leave loop key drop \ clean up 00 out ton- ; \ ---------------------------------------------------------- \ Example 5 - dance of 4 servos. To test the 4 servos (solo) DECIMAL 0480 constant SL 1700 constant SR 1000 constant SM IHERE \ create a list of moves SL i, SL i, SL i, SL i, SR i, SR i, SM i, SR i, SM i, SM i, SR i, SM i, SL i, SL i, SM i, SL i, SM i, SM i, SL i, SM i, SR i, SR i, SR i, SR i, CONSTANT M0 \ -- adr \ get list address : ROWS \ i -- n \ calculate row offset in bytes 4 cells * ; : ROW@ \ adr -- x0 x1 x2 x3 \ get 4 values from adr dup 4 cells + swap DO i @ cell +LOOP ; : DANCE \ adr n -- \ play list at address, n rows. rows over + swap \ calculate end of list DO \ from beginning till end of list ( i u. ) \ testing i row@ ldx servos \ drive servos to positions of row 1 rows +LOOP ; \ advance one row : EX5 \ -- \ dance until key is pressed initio BEGIN m0 6 dance \ set list and rows, then play it once ... key? UNTIL \ ... again until key is pressed. key drop ; \ clean up. \ ---------------------------------------------------------- \ Example 6 - servo follows analog input pin (ADC4) (solo) \ ADC@ is 0 .. $3FF \ SERVO is &480 .. &1700 DECIMAL : POSITION \ adc -- pos \ scale adc value to servo position 480 + ; : EX6 \ -- \ Position of servo2 given by potentiometer initio \ init ports, adc4 adcon \ init ADC initx \ statposition of servos BEGIN adc@ position x2 ! serve key? UNTIL key drop ; \ clean up. \ ---------------------------------------------------------- \ Example 7 - get analog input from ADC channel 4. (solo) HEX : EX7 \ -- \ ADC to OUT and terminal mk0 initio adc4 adcon \ init all modules s2- BEGIN adc@ 44 / \ scale 10Bit value, 3FF..0 --> F...0 dup out \ display scaled value . 1sec \ print to terminal, wait 1 second key? UNTIL \ leave loop, clean up key drop ton- ; \ ---------------------------------------------------------- \ Example 8 - audio visual display of ADC. (solo) HEX : EX8 \ -- \ ADC to OUT and play note mk0 initio adc4 adcon \ init all modules BEGIN adc@ 44 / \ scale 10Bit value, 3FF..0 --> F...0 dup out \ display scaled value 200 note \ play apropriate tone key? UNTIL \ leave loop, clean up key drop ton- ; \ ---------------------------------------------------------- \ Example 9 - play demo song. (solo) \ Connect speaker between P1.5 (pin 7) and GND. variable BEAT \ holds delay time in ms : whole \ -- n \ duration of whole note beat @ ; : quarter \ -- n \ duration of quarter note whole 4 / ; : eighth \ -- n \ duration of eighth note quarter 2 / ; : n1 \ i -- \ play whole note i whole note ; : n4 \ i -- \ play quarter note i quarter note ; : n8 \ i -- \ play eighth note i eighth note ; : p1 \ -- \ play whole pause whole pause ; : p4 \ -- \ play quarter pause quarter pause ; : EX9 \ -- \ play MYBONNIE once 500 beat ! 06 n4 \ G4 0C n4 \ F5 0A n4 \ D5 09 n4 \ C5 0A n4 \ D5 09 n4 \ C5 07 n4 \ A4 06 n4 \ G4 04 n1 \ E4 06 n4 \ G4 0C n4 \ F5 0A n4 \ D5 09 n4 \ C5 09 n4 \ C5 08 n4 \ B4 09 n4 \ C5 0A n1 \ D5 ton- ; \ try to make it sound better ... \ ---------------------------------------------------------- \ Example 0 - leave demo loop, run forth. : EX0 cr .ver cr ." forth - command me." abort ; \ ---------------------------------------------------------- \ DEMOLOOP is the main programm starting at power up or reset. \ Select an example program by it's number using S2. \ Press S3 to run it. \ Select and run Example 11 to enter forth. : DEMOLOOP \ -- initio s2- S3- \ init system and reset edge detection 0000 OUT \ initial OUT value 000F out! \ indicate 'ready', turn all LEDs on BEGIN s2? IF \ select demo with S2 12po n0@ 1+ F and 12po n0! \ increment OUT nibble out> \ display it 100 ms s2- \ wait, then reset S2 THEN S3? IF \ run demo with S3 12po n0@ dup 0 = IF EX0 THEN \ run example ... dup 1 = IF EX1 THEN dup 2 = IF EX2 THEN dup 3 = IF EX3 THEN dup 4 = IF EX4 THEN dup 5 = IF EX5 THEN dup 6 = IF EX6 THEN dup 7 = IF EX7 THEN dup 8 = IF EX8 THEN dup 9 = IF EX9 THEN drop S3- \ clean up stack, reset S3 00 out \ back to start value THEN AGAIN ; \ --> up to here the image is saved as file \ --> 4e4th+mmt4+ex-V10.txt in TI format \ ---------------------------------------------------------- \ More example programs made for terminal interaction. \ You need a serial PC connection to the MSP430 MCU. \ How to do that is shown in the documentation of MMT4. \ ---------------------------------------------------------- \ ---------------------------------------------------------- \ Example 11 - echo any key. (PC) HEX : EX11 \ -- \ terminal KEY to OUT with echo base @ hex \ save number base on stack, set hex output initio 0000 out cr ." press any key to start, " cr ." Esc to quit ... " cr \ new line BEGIN key \ get key dup over 20 < IF 5E emit 40 + emit \ echo control character ELSE emit THEN \ echo character dup space 2# space \ print character value dup out \ send lower nibble to OUT 1B ( esc ) = UNTIL base ! ; \ exit on esc-character \ ---------------------------------------------------------- \ Example 12 - toggle OUT bits manually. (PC) HEX : tout \ c -- c \ dup [char] 1 = IF 01 12po ctoggle out> exit THEN dup [char] 2 = IF 02 12po ctoggle out> exit THEN dup [char] 3 = IF 04 12po ctoggle out> exit THEN dup [char] 4 = IF 08 12po ctoggle out> exit THEN dup [char] 0 = IF 00 out exit THEN dup [char] f = IF 0f out exit THEN ; : EX12 \ -- \ press 1 2 3 4 to toggel OUT bits, \ 0 to clear all, F to set all. initio 00 out cr ." press 1 2 3 4 " cr ." Esc to quit ... " cr \ new line BEGIN key tout 1B ( esc ) = UNTIL ; \ exit on esc-character \ --> up to here the image is saved as file \ --> 4e4th+mmt4+ex+pcex-V10.txt in TI format \ Add your own examples here. \ SAVE when compiled. \ ---------------------------------------------------------- \ todo *** decimal unused u. \ RAM mem u. \ FLASH hex .s ( finis )